493 research outputs found

    Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

    Get PDF
    summary:This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1][0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper

    Error Analysis of a Fully Discrete Projection Method for Magnetohydrodynamic System

    Get PDF
    In this paper, we develop and analyze a finite element projection method for magnetohydrodynamics equations in Lipschitz domain. A fully discrete scheme based on Euler semi-implicit method is proposed, in which continuous elements are used to approximate the Navier–Stokes equations and H(curl) conforming Nédélec edge elements are used to approximate the magnetic equation. One key point of the projection method is to be compatible with two different spaces for calculating velocity, which leads one to obtain the pressure by solving a Poisson equation. The results show that the proposed projection scheme meets a discrete energy stability. In addition, with the help of a proper regularity hypothesis for the exact solution, this paper provides a rigorous optimal error analysis of velocity, pressure and magnetic induction. Finally, several numerical examples are performed to demonstrate both accuracy and efficiency of our proposed scheme

    Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses

    Get PDF
    Analysis of 280 experimentally-verified cis-regulatory modules from Drosophila reveal features both common to all and unique to distinct subclasses of modules

    OpenAUC: Towards AUC-Oriented Open-Set Recognition

    Full text link
    Traditional machine learning follows a close-set assumption that the training and test set share the same label space. While in many practical scenarios, it is inevitable that some test samples belong to unknown classes (open-set). To fix this issue, Open-Set Recognition (OSR), whose goal is to make correct predictions on both close-set samples and open-set samples, has attracted rising attention. In this direction, the vast majority of literature focuses on the pattern of open-set samples. However, how to evaluate model performance in this challenging task is still unsolved. In this paper, a systematic analysis reveals that most existing metrics are essentially inconsistent with the aforementioned goal of OSR: (1) For metrics extended from close-set classification, such as Open-set F-score, Youden's index, and Normalized Accuracy, a poor open-set prediction can escape from a low performance score with a superior close-set prediction. (2) Novelty detection AUC, which measures the ranking performance between close-set and open-set samples, ignores the close-set performance. To fix these issues, we propose a novel metric named OpenAUC. Compared with existing metrics, OpenAUC enjoys a concise pairwise formulation that evaluates open-set performance and close-set performance in a coupling manner. Further analysis shows that OpenAUC is free from the aforementioned inconsistency properties. Finally, an end-to-end learning method is proposed to minimize the OpenAUC risk, and the experimental results on popular benchmark datasets speak to its effectiveness

    The Minority Matters: A Diversity-Promoting Collaborative Metric Learning Algorithm

    Full text link
    Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collaborative Filtering. Following the convention of RS, existing methods exploit unique user representation in their model design. This paper focuses on a challenging scenario where a user has multiple categories of interests. Under this setting, we argue that the unique user representation might induce preference bias, especially when the item category distribution is imbalanced. To address this issue, we propose a novel method called \textit{Diversity-Promoting Collaborative Metric Learning} (DPCML), with the hope of considering the commonly ignored minority interest of the user. The key idea behind DPCML is to include a multiple set of representations for each user in the system. Based on this embedding paradigm, user preference toward an item is aggregated from different embeddings by taking the minimum item-user distance among the user embedding set. Furthermore, we observe that the diversity of the embeddings for the same user also plays an essential role in the model. To this end, we propose a \textit{diversity control regularization} term to accommodate the multi-vector representation strategy better. Theoretically, we show that DPCML could generalize well to unseen test data by tackling the challenge of the annoying operation that comes from the minimum value. Experiments over a range of benchmark datasets speak to the efficacy of DPCML

    Modeling and analysis of the transmission dynamics of cystic echinococcosis: Effects of increasing the number of sheep

    Get PDF
    A transmission dynamics model with the logistic growth of cystic echinococcus in sheep was formulated and analyzed. The basic reproduction number was derived and the results showed that the global dynamical behaviors were determined by its value. The disease-free equilibrium is globally asymptotically stable when the value of the basic reproduction number is less than one; otherwise, there exists a unique endemic equilibrium and it is globally asymptotically stable. Sensitivity analysis and uncertainty analysis of the basic reproduction number were also performed to screen the important factors that influence the spread of cystic echinococcosis. Contour plots of the basic reproduction number versus these important factors are presented, too. The results showed that the higher the deworming rate of dogs, the lower the prevalence of echinococcosis in sheep and dogs. Similarly, the higher the slaughter rate of sheep, the lower the prevalence of echinococcosis in sheep and dogs. It also showed that the spread of echinococcosis has a close relationship with the maximum environmental capacity of sheep, and that they have a remarkable negative correlation. This reminds us that the risk of cystic echinococcosis may be underestimated if we ignore the increasing number of sheep in reality

    Non-linear relationship between sleep duration and blood pressure in children with short stature

    Get PDF
    BackgroundEvidence regarding the relationship between sleep duration and blood pressure is controversial. Therefore, the aim of this study was to investigate the relationship between sleep duration and blood pressure in children with short stature.MethodsA total of 1,085 participants with short stature were enrolled from the Affiliated Hospital of Jining Medical University in China. The variables involved in this study included sleep duration, anthropometric indicators and biochemical parameters. Sleep duration was evaluated in a face-to-face interview.ResultsThe average age of the 1,085 selected participants was 10.2 ± 3.5 years old, and approximately 763 (70.32%) of them were male. The results of adjusted linear regression showed that sleep duration was negatively associated with systolic blood pressure z scores (SBP-Z) and diastolic blood pressure z scores (DBP-Z) after adjusting for confounders (β −0.07, 95% CI −0.13, −0.01 P = 0.038; β −0.05, 95% CI −0.10, −0.01 P = 0.035, respectively). A nonlinear relationship was detected between sleep duration and blood pressure, including SBP-Z, DBP-Z and mean arterial pressure z scores (MAP-Z). The inflection point of the nonlinear relationship between sleep duration and SBP-Z is 10 h, and the inflection point of DBP-Z and MAP-Z is 8 h.ConclusionThis study revealed a nonlinear relationship between sleep duration and blood pressure in children with short stature. The findings suggest that the optimal sleep duration in children with short stature was 8–10 h, and sleep durations either too short or too long were associated with increased blood pressure levels

    AccEPT: An Acceleration Scheme for Speeding Up Edge Pipeline-parallel Training

    Full text link
    It is usually infeasible to fit and train an entire large deep neural network (DNN) model using a single edge device due to the limited resources. To facilitate intelligent applications across edge devices, researchers have proposed partitioning a large model into several sub-models, and deploying each of them to a different edge device to collaboratively train a DNN model. However, the communication overhead caused by the large amount of data transmitted from one device to another during training, as well as the sub-optimal partition point due to the inaccurate latency prediction of computation at each edge device can significantly slow down training. In this paper, we propose AccEPT, an acceleration scheme for accelerating the edge collaborative pipeline-parallel training. In particular, we propose a light-weight adaptive latency predictor to accurately estimate the computation latency of each layer at different devices, which also adapts to unseen devices through continuous learning. Therefore, the proposed latency predictor leads to better model partitioning which balances the computation loads across participating devices. Moreover, we propose a bit-level computation-efficient data compression scheme to compress the data to be transmitted between devices during training. Our numerical results demonstrate that our proposed acceleration approach is able to significantly speed up edge pipeline parallel training up to 3 times faster in the considered experimental settings
    • …
    corecore